Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,3-Bis(biphenyl-4-yl)-2,2-dibromo-3oxopropyl acetate

Jerry P. Jasinski,^a* James A. Golen,^a B. P. Siddaraju,^b B. Narayana^c and H. S. Yathirajan^b

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 28 December 2011; accepted 29 December 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; R factor = 0.052; wR factor = 0.130; data-to-parameter ratio = 19.1.

In the title compound, C₂₉H₂₂Br₂O₃, the dihedral angles between the mean planes of the benzene rings within each biphenyl group are 26.7 (8) and 30.9 (8) $^{\circ}$. The mean planes of the terminal and inner benzene rings of the biphenyl groups bonded through a propan-1-one group in the V-shaped molecule are oriented at angles of 66.1 (7) and 60.0 (8) $^{\circ}$, respectively. The two Br atoms are opposite the propen-1-one group. Weak intermolecular C-H···O and C-H··· π interactions are observed in the crystal structure.

Related literature

For chalcone derivatives exhibiting non-linear optical effects, see: Indira et al. (2002); Tam et al. (1989); Uchida et al. (1998). For the improvement of molecular first-order hyperpolarizabilities, see: Zhao et al. (2002). For related dibromo chalcone structures, see: Butcher et al. (2007); Narayana et al. (2007); Sarojini et al. (2007); Yathirajan et al. (2007); For the synthesis of various chalcone derivatives, see: Samshuddin et al. (2011); Jasinski et al. (2010).

Experimental

Crystal data

C29H22Br2O3 V = 2469.4 (5) Å³ $M_r = 578.29$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 12.0497 (14) Å $\mu = 3.31 \text{ mm}^$ b = 20.842 (2) Å T = 173 Kc = 9.9482 (10) Å $0.20 \times 0.20 \times 0.10 \text{ mm}$ $\beta = 98.743 (10)^{\circ}$

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) $T_{\min} = 0.557, T_{\max} = 0.733$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	308 parameters
$wR(F^2) = 0.130$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$
5881 reflections	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

22652 measured reflections

 $R_{\rm int} = 0.068$

5881 independent reflections

3640 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C24-C29 ring.

$D-H\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C1 - H1C \cdots O1^{i}$ $C17 - H17A \cdots O3^{ii}$ $C20 - H20A \cdots Cg4^{iii}$	0.98 0.95 0.95	2.41 2.47 2.82	3.336 (6) 3.369 (5) 3.707 (4)	158 158 157

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) $x, -y - \frac{1}{2}, z - \frac{3}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

BPS thanks the University of Mysore for research facilities. JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5043).

References

- Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, 04308-04309.
- Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.
- Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.
- Narayana, B., Mayekar, A. N., Yathirajan, H. S., Sarojini, B. K. & Kubicki, M. (2007). Acta Cryst. E63, 04362.
- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharm. Chem. 3, 232-240.
- Sarojini, B. K., Narayana, B., Yathirajan, H. S., Mayekar, A. N. & Bolte, M. (2007). Acta Cryst. E63, o3755.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96.
- Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). *Mol. Cryst. Liq. Cryst.* **315**, 135–140.
- Yathirajan, H. S., Mayekar, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, 02345.
- Zhao, B., Lu, W. Q., Zhou, Z. H. & Wu, Y. (2002). J. Mater. Chem. 10, 1513– 1517.

Acta Cryst. (2012). E68, o362-o363 [doi:10.1107/S1600536811056169]

1,3-Bis(biphenyl-4-yl)-2,2-dibromo-3-oxopropyl acetate

J. P. Jasinski, J. A. Golen, B. P. Siddaraju, B. Narayana and H. S. Yathirajan

Comment

Among several organic compounds exhibiting NLO effects, chalcone derivatives are important materials for their excellent blue light transmittance and good crystallizability. It has been observed that substitution of a bromo group on either of the phenyl rings greatly influences non-centrosymmetric crystal packing (Uchida *et al.*, 1998; Tam *et al.*, 1989; Indira *et al.*, 2002). Bromo substituents can obviously improve molecular first-order hyperpolarizabilities and can effectively reduce dipole-dipole interactions between molecules (Zhao *et al.*, 2002). Chalcone derivatives usually have lower melting points, which can be a drawback when their crystals are used in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable. In order to synthesize the dibromo derivative of this chalcone, (2E)-1,3-di(biphenyl-4-yl)prop-2-en-1-one was brominated using bromine in acetic acid. But instead of the dibromo derivative of this chalcone, a new product 2,2-dibromo-1,3-di(biphenyl-4-yl)-3-oxopropyl acetate (I) has been obtained.

The crystal structures of some dibromo chalcones viz., 2,3-dibromo-3-(5-bromo-2-methoxyphenyl)-1-(2,4-dichlorophenyl) propan-1-one (Narayana *et al.*, 2007), 2,3-dibromo-3-(4-bromo-6-methoxy -2-naphthyl)-1-(4-methoxyphenyl)propan-1-one (Sarojini *et al.*, 2007), 2,3-dibromo-3-(5-bromo-6-methoxy-2-naphthyl)-1-(2,4-dichlorophenyl) propan-1-one (Yathirajan *et al.*, 2007) and (2Z)-2-bromo-3-[3,5-dibromo-4-(ethylamino)phenyl]-1- (2,4-dichlorophenyl)prop-2-en-1-one (Butcher *et al.*, 2007) have been reported. In continuation of our work on synthesis of various derivatives of chalcone (Samshuddin *et al.*, 2011; Jasinski *et al.*, 2010), the title chalcone dibromide, (I), was prepared and its crystal structure is reported.

In the crystal structure of (I), the dihedral angles between the mean planes of the benzene rings within each biphenyl group are 26.7 (8)° and 30.9 (8)° (Fig. 1). The mean planes of the terminal and inner benzene rings of the biphenyl groups bonded through a propan-1-one group in the V-shaped molecule are oriented at angles of 66.1 (7) and 60.0 (8)°, respectively. The two bromine atoms are opposite the propen-1-one group extending in an apical configuration. Weak C—H···O and C—H···Cg π -ring intermolecular interactions are observed in the crystal structure (Table 1, Fig. 2).

Experimental

To a solution of (2E)-1,3-di(biphenyl-4-yl)prop-2-en-1-one (3.60 g, 0.01 mol) in acetic acid (25 ml), bromine (1.60 g, 0.01 mol) in acetic acid (10 ml) was added slowly with stirring at 273 K. After completion of the addition of the bromine solution, the reaction mixture was stirred for 5 h. The solid obtained was filtered and recrystallized from acetone. Single crystals were grown from its methanol solution by slow evaporation. The yield of the compound was 86%. (m.p.: 445 K).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95–1.00 Å (CH) or 0.98 Å (CH₃). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH) or 1.49 (CH₃) × U_{eq} of the parent atom.

Figures

Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound viewed along the *a* axis. Hydrogen atoms have been omitted for clarity.

1,3-Bis(biphenyl-4-yl)-2,2-dibromo-3-oxopropyl acetate

Crystal data

C ₂₉ H ₂₂ Br ₂ O ₃	F(000) = 1160
$M_r = 578.29$	$D_{\rm x} = 1.555 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2960 reflections
a = 12.0497 (14) Å	$\theta = 3.0 - 30.0^{\circ}$
b = 20.842 (2) Å	$\mu = 3.31 \text{ mm}^{-1}$
c = 9.9482 (10) Å	<i>T</i> = 173 K
$\beta = 98.743 \ (10)^{\circ}$	Block, colourless
$V = 2469.4 (5) \text{ Å}^3$	$0.20\times0.20\times0.10~mm$
Z = 4	

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer	5881 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3640 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.068$
Detector resolution: 16.1500 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 3.0^\circ$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2010)	$k = -27 \rightarrow 26$
$T_{\min} = 0.557, T_{\max} = 0.733$	$l = -13 \rightarrow 12$
22652 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.052$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.130$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.053P)^2 + 0.4853P]$ where $P = (F_o^2 + 2F_o^2)/3$
5881 reflections	$(\Delta/\sigma)_{max} = 0.001$
308 parameters	$\Delta \rho_{max} = 0.72 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.59 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.44982 (4)	0.34440 (2)	0.13153 (5)	0.05921 (17)
Br2	0.42924 (4)	0.46937 (2)	0.31413 (5)	0.05352 (15)
01	0.1796 (3)	0.28133 (16)	0.4651 (3)	0.0722 (10)
O2	0.3020 (2)	0.28697 (12)	0.3156 (3)	0.0488 (7)
03	0.1617 (2)	0.39172 (18)	0.2153 (3)	0.0758 (10)
C1	0.1816 (5)	0.1984 (2)	0.2981 (5)	0.0736 (15)
H1A	0.1179	0.1800	0.3354	0.110*
H1B	0.2442	0.1679	0.3100	0.110*
H1C	0.1592	0.2073	0.2010	0.110*
C2	0.2174 (4)	0.2594 (2)	0.3710 (5)	0.0539 (11)
C3	0.3430 (3)	0.34764 (17)	0.3725 (4)	0.0406 (9)
H3A	0.2813	0.3675	0.4151	0.049*
C4	0.3582 (3)	0.38888 (19)	0.2475 (4)	0.0423 (9)
C5	0.2436 (3)	0.4071 (2)	0.1659 (4)	0.0484 (10)
C6	0.2285 (3)	0.44157 (18)	0.0336 (4)	0.0418 (9)
C7	0.3135 (3)	0.46850 (19)	-0.0303 (4)	0.0480 (10)
H7A	0.3894	0.4656	0.0125	0.058*
C8	0.2891 (3)	0.4989 (2)	-0.1532 (4)	0.0496 (10)
H8A	0.3484	0.5168	-0.1939	0.060*
C9	0.1792 (3)	0.50414 (19)	-0.2200 (4)	0.0432 (9)
C10	0.0950 (3)	0.47780 (18)	-0.1548 (4)	0.0454 (10)
H10A	0.0189	0.4809	-0.1969	0.054*
C11	0.1194 (3)	0.44754 (19)	-0.0316 (4)	0.0452 (10)
H11A	0.0599	0.4303	0.0099	0.054*
C12	0.1512 (3)	0.53706 (17)	-0.3519 (4)	0.0435 (9)

C13	0.2239 (4)	0.5370 (2)	-0.4479 (5)	0.0557 (12)
H13A	0.2932	0.5147	-0.4287	0.067*
C14	0.1977 (4)	0.5685 (2)	-0.5701 (5)	0.0600 (12)
H14A	0.2495	0.5680	-0.6332	0.072*
C15	0.0983 (4)	0.6004 (2)	-0.6020 (5)	0.0567 (11)
H15A	0.0810	0.6224	-0.6862	0.068*
C16	0.0235 (4)	0.6000 (2)	-0.5100 (5)	0.0571 (12)
H16A	-0.0467	0.6213	-0.5318	0.069*
C17	0.0496 (4)	0.5689 (2)	-0.3860 (5)	0.0525 (11)
H17A	-0.0027	0.5694	-0.3236	0.063*
C18	0.4403 (3)	0.33835 (17)	0.4820 (4)	0.0380 (9)
C19	0.5332 (3)	0.30086 (19)	0.4645 (4)	0.0485 (10)
H19A	0.5355	0.2805	0.3795	0.058*
C20	0.6214 (3)	0.29298 (19)	0.5683 (4)	0.0470 (10)
H20A	0.6844	0.2683	0.5526	0.056*
C21	0.6208 (3)	0.32024 (17)	0.6958 (4)	0.0392 (9)
C22	0.5258 (3)	0.35519 (19)	0.7145 (4)	0.0463 (10)
H22A	0.5208	0.3729	0.8014	0.056*
C23	0.4388 (3)	0.36451 (19)	0.6088 (4)	0.0453 (10)
H23A	0.3762	0.3897	0.6240	0.054*
C24	0.7180 (3)	0.31323 (18)	0.8042 (4)	0.0417 (9)
C25	0.7914 (4)	0.2617 (2)	0.8065 (5)	0.0554 (11)
H25A	0.7759	0.2287	0.7405	0.066*
C26	0.8855 (4)	0.2576 (2)	0.9022 (5)	0.0634 (13)
H26A	0.9348	0.2222	0.9007	0.076*
C27	0.9099 (4)	0.3037 (3)	0.9998 (5)	0.0687 (14)
H27A	0.9757	0.3007	1.0656	0.082*
C28	0.8380 (4)	0.3540 (2)	1.0011 (5)	0.0645 (13)
H28A	0.8529	0.3857	1.0701	0.077*
C29	0.7442 (4)	0.3597 (2)	0.9043 (5)	0.0527 (11)
H29A	0.6965	0.3959	0.9057	0.063*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0624 (3)	0.0713 (3)	0.0495 (3)	0.0171 (2)	0.0263 (2)	0.0032 (2)
Br2	0.0479 (3)	0.0544 (3)	0.0586 (3)	-0.0059 (2)	0.0094 (2)	-0.0019 (2)
O1	0.073 (2)	0.095 (2)	0.054 (2)	-0.0222 (19)	0.0280 (18)	-0.0089 (18)
O2	0.0503 (17)	0.0525 (16)	0.0455 (17)	-0.0068 (13)	0.0136 (14)	-0.0048 (13)
O3	0.0397 (17)	0.131 (3)	0.060 (2)	0.0013 (18)	0.0162 (16)	0.032 (2)
C1	0.091 (4)	0.069 (3)	0.060 (3)	-0.025 (3)	0.011 (3)	-0.001 (3)
C2	0.055 (3)	0.067 (3)	0.039 (3)	-0.008 (2)	0.007 (2)	0.007 (2)
C3	0.038 (2)	0.045 (2)	0.040 (2)	-0.0017 (18)	0.0107 (18)	-0.0078 (18)
C4	0.036 (2)	0.056 (2)	0.036 (2)	0.0000 (18)	0.0115 (17)	-0.0035 (18)
C5	0.039 (2)	0.065 (3)	0.043 (3)	-0.001 (2)	0.0129 (19)	-0.001 (2)
C6	0.038 (2)	0.047 (2)	0.042 (2)	-0.0016 (18)	0.0113 (18)	-0.0012 (18)
C7	0.032 (2)	0.061 (3)	0.051 (3)	0.0008 (19)	0.0057 (19)	0.006 (2)
C8	0.040 (2)	0.056 (3)	0.054 (3)	-0.0046 (19)	0.012 (2)	0.006 (2)

C9	0.043 (2)	0.046 (2)	0.042 (2)	-0.0016 (18)	0.0082 (18)	-0.0010 (18)
C10	0.035 (2)	0.054 (2)	0.047 (3)	-0.0046 (18)	0.0057 (19)	-0.0062 (19)
C11	0.038 (2)	0.051 (2)	0.048 (3)	-0.0071 (18)	0.0116 (19)	-0.0028 (19)
C12	0.044 (2)	0.041 (2)	0.047 (3)	0.0001 (18)	0.0087 (19)	0.0019 (18)
C13	0.051 (3)	0.062 (3)	0.057 (3)	0.012 (2)	0.018 (2)	0.015 (2)
C14	0.063 (3)	0.064 (3)	0.058 (3)	0.000(2)	0.022 (2)	0.014 (2)
C15	0.062 (3)	0.052 (3)	0.053 (3)	-0.004 (2)	0.001 (2)	0.011 (2)
C16	0.051 (3)	0.053 (3)	0.064 (3)	0.008 (2)	0.000 (2)	0.006 (2)
C17	0.046 (3)	0.055 (3)	0.057 (3)	0.002 (2)	0.009 (2)	-0.003 (2)
C18	0.036 (2)	0.045 (2)	0.033 (2)	-0.0052 (17)	0.0063 (17)	-0.0016 (16)
C19	0.055 (3)	0.055 (2)	0.037 (2)	0.006 (2)	0.010 (2)	-0.0086 (19)
C20	0.043 (2)	0.052 (2)	0.047 (3)	0.0102 (19)	0.011 (2)	-0.0024 (19)
C21	0.044 (2)	0.038 (2)	0.037 (2)	-0.0034 (17)	0.0111 (18)	0.0016 (16)
C22	0.055 (3)	0.051 (2)	0.035 (2)	0.001 (2)	0.014 (2)	-0.0062 (18)
C23	0.043 (2)	0.051 (2)	0.044 (3)	0.0053 (18)	0.014 (2)	-0.0031 (19)
C24	0.045 (2)	0.041 (2)	0.039 (2)	-0.0053 (18)	0.0082 (18)	0.0066 (17)
C25	0.066 (3)	0.050 (2)	0.050 (3)	0.004 (2)	0.007 (2)	0.001 (2)
C26	0.056 (3)	0.070 (3)	0.063 (3)	0.012 (2)	0.004 (3)	0.017 (3)
C27	0.064 (3)	0.080 (4)	0.058 (3)	-0.006 (3)	-0.004 (3)	0.016 (3)
C28	0.071 (3)	0.064 (3)	0.054 (3)	-0.013 (3)	-0.005 (3)	-0.005 (2)
C29	0.056 (3)	0.052 (2)	0.049 (3)	-0.003 (2)	0.003 (2)	-0.002 (2)

Geometric parameters (Å, °)

Br1—C4	1.949 (3)	C14—C15	1.364 (6)
Br2—C4	1.953 (4)	C14—H14A	0.9500
O1—C2	1.192 (5)	C15—C16	1.379 (6)
O2—C2	1.359 (5)	C15—H15A	0.9500
O2—C3	1.441 (4)	C16—C17	1.386 (6)
O3—C5	1.211 (4)	C16—H16A	0.9500
C1—C2	1.493 (6)	С17—Н17А	0.9500
C1—H1A	0.9800	C18—C23	1.377 (5)
C1—H1B	0.9800	C18—C19	1.398 (5)
C1—H1C	0.9800	C19—C20	1.374 (6)
C3—C18	1.487 (5)	C19—H19A	0.9500
C3—C4	1.545 (5)	C20—C21	1.391 (5)
С3—НЗА	1.0000	C20—H20A	0.9500
C4—C5	1.539 (6)	C21—C22	1.393 (5)
C5—C6	1.486 (6)	C21—C24	1.473 (6)
C6—C11	1.381 (5)	C22—C23	1.381 (6)
C6—C7	1.402 (5)	C22—H22A	0.9500
C7—C8	1.369 (6)	С23—Н23А	0.9500
С7—Н7А	0.9500	C24—C25	1.389 (6)
C8—C9	1.392 (6)	C24—C29	1.391 (6)
C8—H8A	0.9500	C25—C26	1.368 (6)
C9—C10	1.398 (5)	C25—H25A	0.9500
C9—C12	1.474 (6)	C26—C27	1.365 (7)
C10—C11	1.370 (6)	C26—H26A	0.9500
C10—H10A	0.9500	C27—C28	1.362 (7)

C11—H11A	0.9500	C27—H27A	0.9500
C12—C17	1.389 (6)	C28—C29	1.374 (6)
C12—C13	1.390 (5)	C28—H28A	0.9500
C13—C14	1.375 (6)	С29—Н29А	0.9500
C13—H13A	0.9500		
C2—O2—C3	116.5 (3)	C15—C14—C13	120.9 (4)
C2—C1—H1A	109.5	C15—C14—H14A	119.5
C2—C1—H1B	109.5	C13—C14—H14A	119.5
H1A—C1—H1B	109.5	C14—C15—C16	118.8 (4)
C2—C1—H1C	109.5	C14—C15—H15A	120.6
H1A—C1—H1C	109.5	С16—С15—Н15А	120.6
H1B—C1—H1C	109.5	C15—C16—C17	120.7 (4)
O1—C2—O2	123.7 (4)	C15—C16—H16A	119.7
O1—C2—C1	126.3 (4)	С17—С16—Н16А	119.7
O2—C2—C1	110.0 (4)	C16—C17—C12	120.9 (4)
O2—C3—C18	111.0 (3)	С16—С17—Н17А	119.6
O2—C3—C4	104.4 (3)	С12—С17—Н17А	119.6
C18—C3—C4	119.0 (3)	C23—C18—C19	117.2 (4)
О2—С3—НЗА	107.3	C23—C18—C3	120.1 (3)
C18—C3—H3A	107.3	C19—C18—C3	122.6 (3)
С4—С3—Н3А	107.3	C20—C19—C18	121.0 (4)
C5—C4—C3	110.8 (3)	C20—C19—H19A	119.5
C5—C4—Br1	110.4 (3)	C18—C19—H19A	119.5
$C_3 - C_4 - Br_1$	111.0 (3)	C19 - C20 - C21	121 7 (4)
$C5-C4-Br^2$	106.2 (3)	C19—C20—H20A	119.1
$C_3 - C_4 - Br^2$	107.7(3)	$C_{21} - C_{20} - H_{20A}$	119.1
Br1—C4—Br2	110,53,(17)	C_{20} C_{21} C_{22}	117.0 (4)
03 - 05 - 06	119.3 (4)	$C_{20} = C_{21} = C_{24}$	120.9(3)
03 - 05 - 04	116.2 (4)	C^{22} C^{21} C^{24}	120.3(3)
C_{6}	124 5 (3)	$C_{22} = C_{21} = C_{21}$	122.1(1) 121.1(4)
$C_{11} - C_{6} - C_{7}$	1174(4)	$C_{23} = C_{22} = C_{21}$	119.5
$C_{11} - C_{6} - C_{5}$	116.0 (3)	$C_{21} = C_{22} = H_{22A}$	119.5
C7 - C6 - C5	126.6 (4)	C_{18} C_{23} C_{22}	121.9 (4)
C_{8}^{-} C_{7}^{-} C_{6}^{-}	120.0(1) 121.2(4)	C_{18} C_{23} H_{23A}	119.1
C8 - C7 - H7A	119.4	$C_{22} = C_{23} = H_{23} A$	119.1
C6_C7_H7A	119.4	$C_{22} = C_{23} = H_{23} R$	115.1
C7 - C8 - C9	121 5 (4)	$C_{25} = C_{24} = C_{25}$	110.9(4) 121 4 (4)
C7 - C8 - H8A	119.3	$C_{23} = C_{24} = C_{21}$	121.4(4)
C_{0} C_{0} H_{8A}	119.5	$C_{23} = C_{24} = C_{24}$	121.0(4) 121.2(4)
C_{8} C_{9} C_{10}	116.9 (4)	$C_{20} = C_{25} = C_{24}$	121.2 (4)
$C_{8} = C_{9} = C_{10}$	110.9 (4)	$C_{20} - C_{25} - H_{25} A$	119.4
$C_{0} = C_{12}$	122.3(3)	$C_{24} = C_{25} = H_{25} = H_{25}$	121 2 (5)
$C_{10} = C_{10} = C_{12}$	120.8(4)	$C_{27} - C_{20} - C_{23}$	121.2 (3)
$C_{11} = C_{10} = H_{10A}$	110.2	$C_{27} = C_{20} = H_{20} A$	119.4
C9_C10_H10A	119.2	C_{28} C_{27} C_{26} C_{27} C_{26}	118.7 (5)
C10_C11_C6	121 4 (4)	C28_C27_H27A	120.7
C10_C11_H11A	110 3	C26_C27_H27A	120.7
C6_C11_H11A	119.5	$C_{20} = C_{21} = H_{21} = H_{21}$	120.7
C_{17} C_{12} C_{13}	117.5	$C_{27} = C_{20} = C_{29}$	121.1(3)
$C_{1} = C_{12} = C_{13}$	11/.1 (4)	U21-U20-1120A	117.J

C17—C12—C9	120.9 (4)	C29—C28—H28A	119.5
C13—C12—C9	121.9 (4)	C28—C29—C24	121.0 (4)
C14—C13—C12	121.5 (4)	С28—С29—Н29А	119.5
С14—С13—Н13А	119.2	С24—С29—Н29А	119.5
C12—C13—H13A	119.2		
C3—O2—C2—O1	-2.8 (6)	C17—C12—C13—C14	1.6 (7)
C3—O2—C2—C1	177.9 (4)	C9—C12—C13—C14	-179.2 (4)
C2—O2—C3—C18	93.1 (4)	C12-C13-C14-C15	-0.8 (7)
C2—O2—C3—C4	-137.5 (3)	C13-C14-C15-C16	-0.7 (7)
O2—C3—C4—C5	70.3 (4)	C14—C15—C16—C17	1.3 (7)
C18—C3—C4—C5	-165.3 (3)	C15-C16-C17-C12	-0.4 (7)
O2—C3—C4—Br1	-52.7 (3)	C13—C12—C17—C16	-1.0 (6)
C18—C3—C4—Br1	71.7 (4)	C9—C12—C17—C16	179.8 (4)
O2—C3—C4—Br2	-173.9 (2)	O2—C3—C18—C23	-126.1 (4)
C18—C3—C4—Br2	-49.5 (4)	C4—C3—C18—C23	112.8 (4)
C3—C4—C5—O3	5.7 (5)	O2—C3—C18—C19	50.6 (5)
Br1—C4—C5—O3	129.2 (4)	C4—C3—C18—C19	-70.5 (5)
Br2—C4—C5—O3	-111.0 (4)	C23-C18-C19-C20	-2.8 (6)
C3—C4—C5—C6	-174.3 (3)	C3-C18-C19-C20	-179.5 (4)
Br1-C4-C5-C6	-50.9 (5)	C18—C19—C20—C21	1.9 (6)
Br2—C4—C5—C6	69.0 (4)	C19—C20—C21—C22	1.0 (6)
O3—C5—C6—C11	-6.8 (6)	C19—C20—C21—C24	-177.7 (4)
C4—C5—C6—C11	173.2 (4)	C20-C21-C22-C23	-2.8 (6)
O3—C5—C6—C7	172.9 (4)	C24—C21—C22—C23	175.8 (4)
C4—C5—C6—C7	-7.1 (6)	C19—C18—C23—C22	0.9 (6)
C11—C6—C7—C8	-0.7 (6)	C3—C18—C23—C22	177.8 (4)
C5—C6—C7—C8	179.6 (4)	C21—C22—C23—C18	1.9 (6)
C6—C7—C8—C9	-0.3 (6)	C20—C21—C24—C25	-25.7 (5)
C7—C8—C9—C10	1.0 (6)	C22-C21-C24-C25	155.7 (4)
C7—C8—C9—C12	179.6 (4)	C20-C21-C24-C29	150.5 (4)
C8—C9—C10—C11	-0.7 (6)	C22—C21—C24—C29	-28.1 (5)
C12-C9-C10-C11	-179.4 (4)	C29—C24—C25—C26	-0.8 (6)
C9—C10—C11—C6	-0.2 (6)	C21—C24—C25—C26	175.6 (4)
C7—C6—C11—C10	0.9 (6)	C24—C25—C26—C27	0.9 (7)
C5-C6-C11-C10	-179.4 (4)	C25—C26—C27—C28	0.4 (7)
C8—C9—C12—C17	-148.5 (4)	C26—C27—C28—C29	-1.8 (7)
C10—C9—C12—C17	30.1 (6)	C27—C28—C29—C24	1.9 (7)
C8—C9—C12—C13	32.3 (6)	C25—C24—C29—C28	-0.6 (6)
C10—C9—C12—C13	-149.1 (4)	C21—C24—C29—C28	-177.0 (4)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C24-C29 rin	ng.			
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C1—H1C···O1 ⁱ	0.98	2.41	3.336 (6)	158
C17—H17A···O3 ⁱⁱ	0.95	2.47	3.369 (5)	158
C20—H20A···Cg4 ⁱⁱⁱ	0.95	2.82	3.707 (4)	157
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$; (ii)	-x, -y+1, -z; (iii) $x, -y-1$	1/2, <i>z</i> -3/2.		

Fig. 2